Case Presentations in Primary Immune Deficiency Diseases

John W. Sleasman, M.D. Robert A. Good Professor and Chief Division of Allergy, Immunology, & Rheumatology Department of Pediatrics University of South Florida

Pseudomonas Sepsis

- 15 mo male in good health until age 12 mo
- 3 episodes of OM
- Initial hospitalization for fever, pneumonia, meningitis, and illustrated rash
- Cultures positive for Pseudomonas aeruginosa
- Leukocytosis with PMN predominance

X-linked Agammaglobulinemia

- Maturation arrest in Pre-B cell development
- No Circulating CD19 or CD20 B lymphocytes
- All Immunoglobulins decreased
- T cell Development is Normal
- Mutation in B cell specific *Src* associated tyrosine kinase (BTK)

Infant with Neutropenia, Fever, and Spenomegaly

- The 14 mo with thrombocytopenia, neutropenia, autoimmune hemolytic anemia with fever, enlarged liver and spleen, "silver" hair, and abnormally light skin.
- Serum ferritin level 10,000

Griscelli Syndrome with Hemophagocytic Lymphohistiocytosis

Diagnostic Criteria for HLH

- Fever, splenomegaly,
- Cytopenia (Hb, plts, neutrophils)
- Hypertriglyceridemia or hypofibrinogeneia
- Hemophagocytosits (BM, Liver, LN, or CSF)
- Low NK activity
- Elevated ferritin (>500 mg/L)
- Abnormal sIL-2R in plasma

18 mo male with eczema, chronic OM,polyarticular arthritis with thisimmunoglobulin profile:PatientNormal levels for age

IgG	445	
IgA	255	
IgM	10	
IgE	335	

<u>Normal levels for age</u> 383- 1030 mg/DL 27- 169 mg/DL 28- 113 mg/DL 0-180 IU/ml

You would expect which of the following laboratory findings in this child?

- a) elevated serum creatinine
- b)abnormal serum aldolase level (>15 mg/DL)
- c) positive HIV ELISA
- d)platelet count of <20,000/ul

Wiskott Aldrich Syndrome

Clinical phenotypes correlate with genotype in WAS:

Four Clinical Phenotypes resulting from mutations of WAS-Wiskott Aldrich Syndrome X-Linked Thrombocytopenia Intermittent XLT X-Linked Neutropenia

Mutations mostly exonic and distributed across gene

Effect on protein expression *generally* correlates with phenotype severity Milder: some protein expressed Severe: no protein expressed

Staph aureus Lymphadenitis

Analysis of Granulocyte Respiratory Burst Using Dihydrorhodamine (DHR)

ABNORMAL DHR RESULTS

Severe Combined Immune Deficiency

• PCP

- Failure to thrive
- Rash and Hepatitis following transfusion
- Normal total WBC
- Severe Lymphopenia

SCID: ADA Deficiency (Defective Purine Salvage Pathway)

NORMAL:

(toxic metabolite) deoxyAdenosine + Normal ADA V Deoxyinosine NON-toxic

Adenosine deaminase deficiency:

(toxic metabolite) deoxyAdenosine

ADA deficiency

accumulation of deoxyadenosine lymphocyte death

Absent T, B, or NK Cells

Rash in a 4 month old

- Failure to thrive
- Skin Biopsy shows perivascular lymphocytic infiltrate
- What are these cells telling you?

•Receptors for IL-2, 4, 7, 9, 15, 21 share common γ chain (γ c) •Jak 3 is involved in intracellular signaling through γ c

- Mutations in common γ chain cause X linked SCID (44%)
- Mutations in Jak 3 cause an autosomal recessive SCID (6%)
- Intracellular signaling through γc and Jak 3 important in T cell and NK cell development
- Phenotype is T-,NK-,B+ SCID for both of these forms

Adapted from: R. Buckley, Primary Cellular Immunodeficiencies. JACI May 2002.

T/B/NK Phenotypes in SCID

Phenotype	Defect	Genetics
T ⁻ / B ⁻ / NK ⁻	ADA Deficiency	AR
T-/ B-/ NK+	RAG Deficiency	AR
	Artemis	AR
T-/ B +/ NK-	γc IL-2R	X-linked
	Jak3	AR
T-/ B + / NK+	IL-7άR	AR
	CD3 δεζ TCR	AR
	Complete Di George	AD

TREC

TREC Assay for NBS Baker, et al, JACI 2009

T cell Deficiencies with abnomal TREC levels

- <u>SCID subtypes</u>: ADA, RAG1, Artemis, Jak3, γcIL-2R (x-linked SCID), IL-7Rα, ζTCR, Zap70, reticular dysgenesis, CHH
- <u>Non-SCID subtypes with low TREC</u>: 22q Deletion Syndrome (DiGeorge), other thymic defects (CHARGE), Idiopathic T cell lymphopenia, extravascular T cells (chylothorax)